Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2362894.v1

ABSTRACT

COVID-19 can cause acute respiratory distress syndrome (ARDS) associated with high morbidity and mortality. Previous studies have shown an association between plasma viral load (VL) of severe acute respiratory distress (SARS-Cov2) and disease severity. This study is one of the first to measure endotracheal aspirate (ETA) VL in addition to plasma VL in patients admitted to the medical intensive care unit with COVID-19. Viral load from both plasma and ETA decreased over time. Subjects with high plasma VL experienced a greater number of adverse events, including ventilator-associated pneumonia (VAP), increased number of days on mechanical ventilation, and increased number of days in hospital. There was no association between ETA VL and adverse events.


Subject(s)
Respiratory Distress Syndrome , Pneumonia , Pneumonia, Ventilator-Associated , COVID-19 , Viremia
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.05.20226654

ABSTRACT

Highly sensitive, specific, and point-of-care (POC) serological assays are an essential tool to manage the COVID-19 pandemic. Here, we report on a microfluidic, multiplexed POC test that can profile the antibody response against multiple SARS-CoV-2 antigens--Spike S1 (S1), Nucleocapsid (N), and the receptor binding domain (RBD)--simultaneously from a 60 {micro}L drop of blood, plasma, or serum. We assessed the levels of anti-SARS-CoV-2 antibodies in plasma samples from 19 individuals (at multiple time points) with COVID-19 that required admission to the intensive care unit and from 10 healthy individuals. This POC assay shows good concordance with a live virus microneutralization assay, achieved high sensitivity (100%) and specificity (100%), and successfully tracked the longitudinal evolution of the antibody response in infected individuals. We also demonstrated that we can detect a chemokine, IP-10, on the same chip, which may provide prognostic insight into patient outcomes. Because our test requires minimal user intervention and is read by a handheld detector, it can be globally deployed in the fight against COVID-19 by democratizing access to laboratory quality tests.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL